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A commonly observed bedform in wide erodible-bed channels consists of rows of 
streaks or stripes parallel to the flow. These stripes can be manifested in terms of 
transverse variation of bed elevation, characteristic grain size (and thus roughness) 
or both. The former case is manifested most strongly in sediment with a nearly 
uniform size distribution and the latter most strongly in sediment with substantial 
heterogeneity in size. The amplitude of stripes is rarely larger than one or two grain 
diameters, and the transverse spacing is invariably of the order of the flow depth. 
They are closely linked to a pattern of paired cells of secondary flow in the flow 
cross-section. 

An existing theory of streak formation for the case of uniform sediment relies 
on a second-order turbulence closure which explicitly links the streamwise flow to 
transverse variations in bed elevation. The theory successfully predicts the formation 
of streaks, but only at rather high values of the Shields stress, i.e. rather strong 
sediment transport. Streaks are commonly observed, however, at Shields stresses as 
low as only slightly above the threshold of motion. 

In the present analysis the previous flow model is adapted to the case of transverse 
variation of roughness as well as elevation, and the constraint of uniform sediment 
is removed. The theory indicates that allowance for even slight heterogeneity of bed 
sediment results in the formation of streaks at any Shields stress above the threshold 
of motion. The resulting streaks are hybrid in the sense that they show transverse 
variation in both elevation and roughness. The model thus provides a general theory 
of streak formation. 

1. Introduction 
The formation of longitudinal stripes of sediment in wide straight channels can 

be observed in laboratory experiments over a wide range of flow and sediment pa- 
rameters. They appear to be more evident in the initial stage of motion, before 
more prominent bedforms such as ripples, dunes or bars become manifest. Longi- 
tudinal streaks, characterized usually by a very small amplitude (one or two grain 
diameters), appear as perturbations in bed elevation if the sediment is homogeneous 
and as stripes of different roughness if the sediment is heterogeneous. They tend 
to be remarkably uniform in the streamwise direction and periodic in the spanwise 
direction with a periodicity that is invariably of the order of the flow depth. That 
is, typical wavelengths vary from one to two times the flow depth. For example, 
Wolman & Brush (1961), Kinoshita (1967), Ashida & Narai (1969) and Ikeda (1981) 
find spacing near twice the flow depth. These references encompass a data base that 
includes both laboratory channels and rivers. 
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FIGURE 1. Longitudinal streaks, Giinter (1971): (a) the characteristic pattern of alternating stripes; 
(b )  a close up of the bed showing the effect of sorting. Flow is from bottom to top. 
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Streaks (see figure 1) are associated with the presence of secondary flow in the 
cross-section. It has been demonstrated both numerically and experimentally that 
lateral variations either in the bed roughness or in the bed elevation are able to 
induce secondary motions that, in turn, can excite the amplification of these bed 
perturbations eventually leading to a stable configuration (Miiller & Studerus 1979; 
Nezu & Nakagawa 1984; Tsujimoto 1989). Most experimental work has, then, been 
devoted to the study of the structure and intensity of the secondary flow generated 
by the two mechanisms, in attempts to shed some light on the phenomenon. The two 
mechanisms are, however, clearly interrelated when the sediment is heterogeneous, as 
is the case in nature. It can be easily demonstrated that the process of sorting on 
the bed that leads to the formation of lateral roughness stripes is also responsible for 
lateral changes in bed elevation so that, at least theoretically, the two mechanisms 
are not separable. 

As in many other studies on bedform formation, linear stability analysis is a 
powerful tool to extract useful information about the occurrence of streaks and on 
their most important geometric characteristics. The well-established quasi-steady 
assumption exploits the considerable difference between the characteristic timescales 
of flow and bed evolution to allow for temporal decoupling of the system of flow 
equations from the continuity equations for each sediment fraction. The response of 
a uniform flow field to a ‘fixed bed perturbation either in roughness or in elevation, 
and the time evolution of these disturbances can then be analysed separately. 

The first step in this direction is the elaboration of the simplest possible flow model 
able to correctly predict the effect of lateral bed variation either in roughness or in 
elevation. A comparison with experiments over a fixed bed will then be possible for 
both cases. 

The formulation of such a model, however, is not a trivial task, owing to the rather 
arcane mechanism by which secondary flow is generated in the cross-section of a 
straight channel. Since the first analysis carried out by Prandtl (see Bradshaw 1987) 
it has been recognized that straight-channel secondary flow can be modelled only 
using a turbulence closure able to provide an accurate description of the variation of 
Reynolds stresses in the cross-sectional plane. All turbulence closures that assume a 
linear dependence of the Reynolds stress tensor on the mean rate of strain tensor (i.e. 
the so-called Boussinesq closures) are known to fail for this configuration. Attention 
must then be focused on more refined second-order turbulence models. Unfortunately 
these models are often formulated in an implicit way and are not suitable for the 
analytic solution that would be desirable in the present context, where the assumption 
of infinitesimal disturbances strongly simplifies the analysis. 

In a previous work (Colombini 1993), one of the authors successfully adopted the 
model of Speziale (1987) to study the formation of sand ridges, i.e. the longitudinal 
bedforms associated with uniform sediment. The same model is adopted here with 
the inclusion of the effect of lateral variation of bed roughness in order to perform 
a complete stability analysis of the formation of streaks formed in heterogeneous 
sediment. This generalization immediately leads to an interesting thought problem. 

Let us formulate the problem for the two limiting cases sketched in figure 2: (a) 
flow over a uniform bed with a sinusoidal lateral variation in bed elevation and (b )  
flow over a flat bed with a sinusoidal lateral variation in the bed roughness. 

The effect of changes in bed roughness on the flow field may be interpreted in 
terms of variation in the ‘reference level’, i.e. the distance from the bed at which the 
mean velocity is assumed to be zero. This distance is proportional to the local value 
of the bed roughness. 
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FIGURE 2. Sketches of flow configuration: ( a )  perturbation of the bed elevation with a uniform 
sediment; ( b )  perturbation of the bed roughness with a flat bed. Here B ,  H and R are the local 
values of bed elevation, flow depth, and the distance between the reference level and the bed. 

At first glance the flow domains in the two cases appear to be identical. It is found 
in case (a) that the transverse flow in the near-bed region moves from trough to 
crest. This in turn drives the instability by which the streaks grow in amplitude over a 
uniform bed (Colombini 1993). A naive generalisation of the results of case (a)  to case 
( b )  would suggest that the transverse secondary flow be directed from low reference 
level (fine sediment) to high reference level (coarse sediment). This conclusion is in 
complete disagreement with observation (McLean 1981; Tominaga & Nezu 1991). 
It also implies that straight-channel secondary currents stabilize roughness streaks 
rather than drive them. That is, the same mechanism that causes elevation streaks 
over uniform sediment obliterates roughness streaks over heterogeneous sediment. 
In the section devoted to the flow field solution the naive generalization leading to 
this conclusion will be shown to be incorrect. It will be shown that both elevation 
and roughness streaks can be explained using the same model for straight-channel 
secondary currents. 

It is convenient at this point to briefly summarize some of the salient concepts and 
results of the theory of formation of sand ridges with homogeneous sediment. For a 
more complete analysis the reader may refer to Colombini (1993). 

The use of the Speziale turbulence closure allows for the formulation of a model 
for the flow field over a sinusoidal bottom of infinitesimal amplitude as a small 
perturbation of the uniform flow in an infinitely wide open channel. A comparison 
with the experimental results of Nezu & Nakagawa (1984) was performed in order 
to obtain optimal values for the two constants Co and CE involved in Speziale’s 
formulation. It was found that values higher than those originally proposed by 
Speziale had to be used in order to obtain a correct description of the Reynolds 
stresses in the cross-sectional plane and consequently a predicted secondary flow of 
the correct intensity. A value of 3.4 for both constants, as opposed to the original 
value of 1.69, provided optimal agreement. 

The sign of the growth rate, and so the amplification or decay of the bed pertur- 
bations, was shown to be controlled by a delicate balance between a destabilizing 
term related to the tangential shear stress at the bed, and a stabilizing term related 
to the effect of gravity. The tangential shear stress at the bottom was found to be 
underestimated by the theory, with a corresponding overestimation of the critical 
value for the occurrence of sand ridges. Sand ridges were predicted to appear only at 
relatively large values of the Froude number, whereas experimental observations show 
that sand ridges occur also at lower values of the Froude number, limited only by the 
threshold for grain motion. The estimate of characteristic transverse wavelength, or 
streaks spacing, was obtained using the standard technique of linear stability theory, 
i.e. by maximizing the growth rate. The prediction for an infinitely wide channel 
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agreed reasonably well with the result of experiments in channel wide enough to 
allow for the neglect of sidewall effects. The predicted values for wavelength were 
near 1.3 times the flow depth for a wide range of flow and sediment parameters. This 
number compares with measured wavelength between 1 and 2 times the depth, with 
the upper limit more common, as quoted above. 

Regarding the stability criterion it must be pointed out that its formulation in 
terms of the Froude number, as originally presented in the paper, is formally correct 
but nevertheless misleading. The role played in the analysis by the Froude number 
is indeed a very minor one, related to the small effect of the undulations of the free 
surface. The dominant flow parameter mechanistically associated with instability is 
the Shields stress; it is incidental that this parameter can be recast in terms of the 
Froude number. Instability is found for values of the Shields stress of order 1.  

As will be shown later, the theory for a heterogeneous sediment presented here 
predicts instability for all values of the Shields stress above the threshold for motion. 
This provides a general explanation of the occurrence of sand ridges at low Shields 
stresses in nature, where the sediment can normally be expected to show significant 
heterogeneity. 

2. Turbulence closure 
As mentioned in the introduction, a correct prediction of the behaviour of the 

Reynolds stresses in the cross-sectional plane is of fundamental importance in the 
modelling of secondary flow. In order to illustrate this, consider the equation of 
streamwise vorticity for a turbulent flow that is uniform in the streamwise direction. 
Neglecting the viscous term, it takes the form 

aw am aw a 2  

at ay aZ ayaz 
- + V -  + w- = -(7:; - 7 . d  + ($ - &) 7y:r (2.la) 

with 

(2.lb) 

If a closure of Boussinesq type is employed, all the terms of the previous equation 
are found to depend on the secondary flow velocities V and W only, so that the 
equation is completely decoupled from the streamwise momentum equation. A 
uniform unidirectional flow, with no secondary flow, may then prevail in the presence 
of an arbitrary lateral perturbation of the bed shape (or of the profile of the reference 
level) since the trivial solution V = 0 and W = 0 always satisfies equation ( 2 . 1 ~ ) .  The 
analogy with the laminar case, where no secondary flow can be generated by varying 
boundary shape, can be illuminating. In this case the streamwise vorticity equation 
reads 

- + v - + w - = v  a" a Z  ( -+-  :i2 iZ:) w. 

aw am 

at aY 
The equation is again identically satisfied if I/ and W are zero. 

This inconsistency can be overcome by choosing a second-order turbulence closure 
to model the Reynolds stresses, as this enforces a coupling between the streamwise 
vorticity and momentum equations. Several choices are available; in fact the problem 
of secondary flow in a square duct has been successfully solved using algebraic stress 
models (Naot & Rodi 1982; Demuren & Rodi 1984), and can in principle be obtained 
from a more general solution involving transport equations for each individual stress. 
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As in Colombini (1993) the turbulence model of Speziale (1987) has been adopted 
here by virtue of its structure, which allows for some drastic simplifications without 
losing the ability to provide a good description of the secondary flow. 

Speziale’s model is in fact an explicit model, with a simple structure that requires 
only two new non-dimensional constants, an eddy viscosity and a mixing length, in 
order to achieve closure. This is particularly suitable here because slight perturbations 
of a uniform unidirectional flow are considered. This suggests the utility of modelling 
the eddy viscosity and the mixing length using algebraic relationships known to hold 
for a uniform flow. 

In a recent paper Gatski & Speziale (1993) have formally demonstrated that 
second-order closures can be seen as explicit generalized forms of algebraic stress 
models. It is then not unexpected that a close similarity exists between the linearized 
form of the Reynolds stresses obtained using Speziale’s model and an algebraic stress 
closure (Naot & Rodi 1982). 

Speziale assumed a functional dependence of the Reynolds stress tensor of the kind 

where v is the velocity vector and p,k,l are the fluid density, the turbulent kinetic 
energy and the turbulence lengthscale respectively. 

Imposing some general constraints on this functional, in particular coordinate 
and dimensional invariance, positiveness of the turbulent kinetic energy and frame- 
indifference, Speziale derived at second-order the following explicit form for the 
Reynolds stresses: 

t.. I ,  = -- :kdij + 2v,Dij + COI’(D~,D,~ - fD,D,,Gij) + C E ~ ~ ( & ,  - ;&,,,dij). ( 2 . 4 ~ )  

Here Di, is the mean rate of strain tensor, vl = :k‘’’l is the eddy viscosity and 

(2.4b) 

is the Oldroyd derivative of Dij. 
In the paper by Gatski & Speziale (1993) the same constitutive relationship, with 

the convective term in the Oldroyd derivative dropped, is obtained as a particular case 
of a more general family of higher-order explicit turbulence closures. The inclusion 
of a more refined turbulent closure, even though likely to improve the agreement with 
the experiments (see the discussion in Colombini 1993), is likely beyond the scope of 
the present contribution; with this in mind the original formulation of Speziale (1987) 
is used here as well. 

The eddy viscosity and the turbulence lengthscale are modelled using the mixing 
length hypothesis as described in De Vriend (1977), with the mixing length 1 chosen 
so as to produce a logarithmic vertical profile of velocity for the base flow. Thus 

2 v, = I  -, 
aY 

1 = ti(y - B )  ( B + R ;  H -y )1 ’2 ,  (2.5a, b) 

where ti is the von Karman constant, taken as 0.4, and B , H  and R are the local 
values of bed elevation, flow depth, and the distance between the reference level and 
the bed, respectively, as shown in figure 2. 

That (2.5) does indeed result in the standard rough logarithmic profile for the 
base flow can be seen as follows. In the absence of secondary flow, the streamwise 
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momentum balance for a steady equilibrium base flow reduces to 

2B + R + H - y  
H t x y  = pu. 7 

where u. is the friction velocity of the base flow. Note that y = B + R + H denotes 
the elevation of the water surface and y = B + R denotes the reference level, at which 
the base streamwise velocity UO vanishes, i.e. 

U O ~ ~ = B + R  = 0. (2.7) 

Completing (2.5) and (2.6) with the closure hypothesis 
7xy = p (1%) 2 ’ 

and integrating subject to (2.7), it is found that 

uo 1 _ -  - -1n (y), 
u. ti 

i.e. the rough logarithmic law. 
Note that B and R are not symmetric in relation (2.5) for mixing length 1. This 

asymmetry is responsible for a pattern of secondary flow near the bed that is directed 
from low B to high B in the case of constant R, but from high R to low R in the case 
of constant B ,  as outlined below. 

3. Linearized flow field solution 
In this section the flow field resulting from the perturbation of a uniform flow due 

to spanwise-periodic disturbances of the bed shape and roughness is studied. All the 
quantities that appear in this section have been made dimensionless using the fluid 
density p, the friction velocity u. and the flow depth of the basic uniform flow. 

The bed topography usually evolves on a much slower timescale than that of 
the flow field, making it possible to neglect all the time derivatives in the three- 
dimensional Reynolds equations, or, equivalently, to assume that the flow adapts 
itself instantaneously to changes in bed elevation and structure. The momentum and 
continuity equations can then be written in the following form: 

au au a?, ax,, 
aZ ay a Z  

v- + w- = 1 +  -+-, 
a Y  

av av aP aTyy a?,,, 
a Y  az ay ay a Z  ’ 

aw aw ap aZyn a?,, 
a Y  aZ az ay aZ ’ 

v-+ w- = -- +- +- 

v-+ w- =--+-+- 

av aw -+-=o, ay az 

(3.la) 

(3.lb) 

(3.1~) 

(3.ld) 

where P is the dynamic pressure. The uniform flow to be perturbed is chosen so as 
to satisfy the equations of motion. 

The following decomposition is introduced into the differential system (3.1) to 
investigate the behaviour of a disturbance with growth rate l2 (defined on an appro- 
priately slow timescale in order to follow the evolution of the sediment processes) and 
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Here e is a small (strictly infinitesimal) parameter and 

E ( t )  = exp(Ot), C(Z) = cos(az), S(z) = sin(az). 

The non-orthogonal coordinate transformation 

(3.2a) 
(3.2b) 
( 3 . 2 ~ )  
(3.2d) 
(3.2e) 

(3.3a, b )  

which maps the cross-section on a rectangular domain, is now introduced. Using the 
above transformation the free surface is identified by q = 1, while q = 0 identifies the 
reference level y = B(z) + R(z). 

The distance above the bed where the boundary condition of zero velocity is applied 
is chosen to be proportional to the local roughness height, so that 

k 
30 

R = L  (3.4) 

where k, is the local value of relative roughness, again proportional to a suitable 
measure of the grain size. 

Making the necessary substitutions and collecting terms at leading order, the system 
of differential equations for the basic uniform flow becomes 

(3.5a) w;oU;, + V [ O U ; I  = -1, 

PA = $3 + fc. (3.5b) 

The above system is solved with the boundary conditions of vanishing velocity 
= 0 and of vanishing shear stress at the free surface, recovering the usual 

The mixing length and eddy viscosity for the basic flow are found to take the forms 

where the primes denote derivatives with respect to q. 

at 
logarithmic distribution for the longitudinal velocity. 

VtO = @J; = K(& + q)(1 - q) ,  (3.6a, b )  10 = K(& + q)(  1 - q)1 /2 ,  

where 
& = -  ka 

30‘ 
( 3 . 6 ~ )  

Owing to the smallness of &, typical values of which are of the order of one tenth 
of the non-dimensional grain size, we have neglected & with respect to 1 in the above 
and in the following equations. 

At first order in r ,  perturbations of (2.5) lead to the following relationships: 

U’ 
V t l  = VIO (- + 2A - h )  , 

u;, 
(3.7a, b )  
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where 

( 3 . 7 ~ ~  d )  

Here r is a normalized amplitude of the perturbation of the roughness height, which 
is given more precisely by E r .  

It is now possible to address the conundrum presented in the Introduction and 
figure 2. The values b = 1 and r = 0 corresponds to case (a), and the values b = 0 
and r = 1 corresponds to case (b). Assuming for simplicity that the free surface is 
flat, it is seen that 

(3.8a, b) 
The transformation (3.3) now reads 

H = 1 - B - R, h = -b - &r. 

(3.9a, b )  

from which it is evident that B and R play identical roles. The function A, on the 
other hand, differs between the two cases: 

(3.10a, b )  

The function A is seen to be proportional to -q for case (a) and to ( 1  - q) for case 
(b). This effect is therefore responsible for the different rotation of the secondary flow 
in the two cases. 

Collecting the terms of order E in (3.1) and substituting ( 3 3 ,  (3.6) and (3.7), a 
system of ordinary differential equations of the following general form is eventually 
obtained: 

DZ = hH + bB + rR. (3.11) 
Here h is considered as a parameter to be determined and 

z= (;). 
The linear differential operator D is the same as the one reported in Appendix A 

of Colombini (1993). The three vectors H , B  and R, which depend only on basic flow 
quantities, are 

H =  

0 
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The above system must be solved so as to satisfy the boundary conditions of 
vanishing velocities at the lower boundary and the dynamic and kinematic boundary 
conditions at the free surface. The solution has been obtained numerically using a 
shooting method with a Runge-Kutta integration scheme. 

More precisely, linearity of the differential system allows us to express its solution 
in the form 

3 

= C i z i  -k hzh  -k bzb -k rZ,. (3.12) 

Thus 2 is a linear combination of three linearly independent solutions of the homo- 
geneous initial value problem 

DZ=O 
each satisfying the boundary conditions at the lower boundary, plus particular solu- 
tions of the non-homogeneous differential systems 

D Z =  H, D Z =  B, D Z = R  

i= 1 

also satisfying the lower boundary conditions. 
The constants cl,c2,c3 and h are then determined by solving the linear algebraic 

non-homogeneous systems obtained by imposing the remaining conditions at the 
upper boundary. 

Once the system has been solved, the secondary flow is known for every value of the 
parameters up to the values of b and r .  One quantity that is crucial in a description 
of the secondary flow and its effect on the bed evolution is the tangential component 
of the shear stress at the bottom. Following the above definitions, it is found that 

z, = - a ( f b b  + t , r )E(r )S ( z )  ( 3 . 1 3 ~ )  

t b  = [vl0Wtlb, f, = [vawt]' (3.1 3b, c) 

where t b  and f, are evaluated at the reference level and the limits b and r identify 
cases ( a )  and ( b )  respectively. 

In figure 3 the quantities f b  and t ,  are plotted as functions of the wavenumber a 
with the relative roughness ka as a parameter. As mentioned in the introduction, 
these quantities also have a formal direct dependence on the Froude number, but 
the dependence is so weak that no change is detectable in the plots as the Froude 
number is varied over the relevant range (0.1-2.0). According to (3.13) a positive 
value of t b  or t ,  corresponds to a tangential bed shear stress that is negative in the 
first and second quadrants and positive in the remaining two. The opposite is true 
for a negative value. Therefore the near-bed flow is directed from trough to crest in 
case ( a )  and from the rough part to the smooth part in case ( b )  in accordance with 
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FIGURE 3. (a) t b  and (b)  t ,  as a function of the wavenumber c( for different values of the relative 

roughnesska: --,ka=0.125;----, k,=0.025; . . . . . .  , k a  = 0.0125. 

the experimental observations. The apparent contradiction between the two has thus 
been resolved. 

4. Bedload transport of sediment mixtures 
Further progress on the subject of roughness streaks requires a formulation for the 

bedload transport of heterogeneous sediment. There are several such formulations in 
the literature; here the treatments of Parker & Sutherland (1990) and Parker (1990a,b) 
are used. The scheme of non-dimensionalization employed in the previous section is 
not used in this section. 

Grain size D, which may be ascribed a specific value for homogeneous sediment, 
becomes a continuously distributed variable for heterogeneous sediment. The asso- 
ciated distribution of sizes is appropriately formulated in terms of the logarithm of 
D rather than D itself. The customary logarithmic scale of sedimentology is the phi 
scale, according to which 

This scale is, however, counterintuitive in that increasing @ corresponds to de- 
D = 2-@. (4.1 ) 
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Bedload . . 
Surface -s 

'.".a 
Substrate 3 . .... '.i a,. 

FIGURE 4. Sketch of the three-layer model for sediment transport 

creasing grain size. 
Paola & Seal 1995) is employed here: 

With this in mind the psi scale (Parker & Andrews 1985; 

D = 2', (4.2a, b )  

A simple three-layer model is used to treat the bedload transport of heterogeneous 
sediment. The top layer consists of moving grains participating in the bedload itself. 
The middle layer is the 'active' or 'exchange' layer, consisting of those immobile grains 
exposed at the interface between the sediment bed and the flowing fluid, and those 
smaller unexposed grains that would be exposed to the flow were the larger exposed 
grains to be moved. The active layer, then, constitutes the reservoir of immobile 
grains that is readily available for entrainment into the bedload. The bottom layer 
consists of substrate. This structure is illustrated in figure 4. 

The active layer is taken to be sufficiently thin to allow the neglect of vertical 
structure. The mass grain size density in the active layer at any point (x,z) and time 
t is here denoted as F(Y,x.z, t ) ,  where by definition 

The first and second moments of this density are of importance in the analysis that 
follows. The mean grain size Y, and standard deviation B (on the psi scale) of the 
active layer are given by 

.X 

Yll, = [ Y F(Y)dY, 
m 

B* = [ (Y - Yl,,)*dY. (4.4a, 6 )  

The corresponding geometric mean grain size D, and geometric standard deviation 

D, = 2',, og = 2". (4.5a, 6 )  

In most treatments the thickness of the active layer L ,  is taken to be some order-one 
multiple of Dw, i.e. the size such that 90% of the mass of a representative sample is 
finer. Here a similar formulation is introduced with the use of the moments presented 
above. The thickness of the active layer L, is given as 

L, = t1,D0 ( 4 . 6 ~ )  

og are given by 
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(4.6b) 
and n, is an order-one constant. In the case of a log-normally distributed sediment 
D, becomes identical to 0 8 4 ,  and thus close to Dw. A value near unity is commonly 
assumed for n, (e.g. Parker 1991~). 

Roughness height k,, and thus the distance above the bed for zero velocity R 
introduced in (3.3) are also taken to be related to D, such that 

nk R = - D ,  
30 

(4.74 b )  

where n k  is an order-one constant. Appropriate values for n k  range from 2 to 3.5 (e.g. 
Bray 1982). 

In the case of the present three-layer model the grain size specific Exner equation 
of sediment mass conservation can be written as 

(4.8) 

Here B b  denotes the elevation of the bottom of the active layer, as shown in 
figure 4; thus 

Bh + La = B .  (4.9) 
In addition qx( Y ,  x ,  z, t )  and qz( Y ,  x ,  z, t )  denote the mass bedload transport rate 

density for size Y in the active layer in the x- and z-directions, respectively. These 
are defined such that the total mass bedload transport rate in the x- and z-directions 
q x T  and q z T  are given by the respective forms 

qxT = L, q.xdy, q z T  = qzdy* (4.10a, b )  

The parameter f! denotes the size density of sediment at the interface between the 
surface and the substrate that is exchanged as the bed aggrades or degrades. Finally 
1, denotes bed porosity, here taken to be constant. 

Variation in the streamwise direction can be neglected in a formulation of the 
problem of streaks. In light of the fact that the bed is subjected to only slight amounts 
of aggradation or degradation in the present linear analysis of streak formation, fr 
is here simply equated to F .  With these simplifications and (4.9) it is seen that (4.8) 
reduces to 

00 00 

(4.11) 

Further progress requires a relation for transverse bedload transport density qz. 
In order to specify this parameter, however, it is first necessary to adopt a form 
for streamwise sediment transport density qx.  An appropriate equation for the 
unidirectional bedload transport of heterogeneous sediment is given in Parker ( 19904, 
according to which the magnitude and size distribution of the bedload transport is 
related to the boundary shear stress of the flow and the size distribution of bed 
material available for transport, i.e. in the active layer. For the purpose of exposition, 
a flow field that is directed in the streamwise ( x )  direction and is uniform in the 
streamwise and transverse ( z )  directions is considered. The streamwise boundary 
shear stress, i.e. the value of T , ~  evaluated at the bed is here denoted as q,. 

In the relation of Parker (1990a), the bedload transport density of a given size Y 
is taken to be related linearly to the availability of that size in the active layer for 
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transport. That is, 
4 . Y  = q u x F ,  (4.12) 

where qux denotes the streamwise transport density per unit content in the active 
layer. The relation for 4u.x is 

qix = 0.00218 8'12 G ( [ ) ,  (4.13~) 

M. Colombini and G.  Parker 

where 
4 u x  

4ux = ((s - l)gDg)'/2 Dg 
(4.13b) 

denotes a dimensionless Einstein unit bedload transport density and the function G ( [ )  
is given as 

5474( 1 - 0.853/[)4.5, 5 > 1.59 
1 < [ < 1.59 
5 -= 1, 

- 1) - 9.28([ - 1)2], (4.13~) 

where 

In the above relations, 

(4.13d) 

(4.13e) 

denotes the Shields stress based on the geometric mean size of the surface layer, s 
denotes the specific density of the sediment, the dimensionless constants 8, and 
take the values 

and 
er = 0.0386, f l  = 0.0951 (4.13f , g )  

(4.13h) 
0 

0 = 1 + -(om - 1) 
om 

where oOc and o,, are specified functions of 8 that can be found in Parker (19906). 
In the case of interest here, bedload transport may be directed in the transverse as 

well as streamwise directions in response to the secondary flow. A transverse bedload 
transport density per unit content in the active layer quz can be defined similarly to 
(4.12); 

4 2  = 4uzF. (4.14) 
A generalized fully nonlinear form for the bedload transport vector (qux,qw) is not 

presently available (but see Kovacs & Parker (1994) for such a relation for uniform 
sediment). The linearized treatment of Parker & Andrews (1985), however, should be 
adequate for the purposes of the present analysis. Their result can be stated as 

4 " ' = 4 u x ( ; - Y z ) .  aB 
(4.15) 

In the above relation tt denotes the bed shear stress tangent to the bed and 
normal to the x-direction, a parameter introduced in the previous section; here it is 
dimensioned. In addition y is a parameter governing the tendency of grains to move 
down transverse slopes under the influence of gravity. The form below was obtained 
with the use of the formulation of Parker & Andrews (1985), but only after replacing 
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the hiding function used therein with the one built into the Parker (1990~) bedload 
formulation: 

(4.16) 

The constant i; in the above relation can be evaluated by imposing concordance 
with the relation of Johannesson & Parker (1989) for uniform sediment, yielding the 
result 

(4.17) y = 2.67. h 

5. Formulation of the linear stability problem 
In this section a linearized treatment of sediment transport of heterogeneous 

mixtures is combined with the linearized flow solution of $3 to determine a dispersion 
relation governing the stability of longitudinal bed streaks associated with transverse 
variation in both elevation and roughness. 

In accordance with the linearized flow analysis of $3, the bed surface size distribution 
F( Y ,  x, z ,  t )  is assumed to consist of a spatially uniform distribution Fo( Y )  plus a 
perturbed part associated with a streak-like flow perturbation: 

(5.1) 

LIFo(P)dY = 1,  s_", Fo(Y)f('Y)dY = 0. (5.2a, b )  

Surface mean size Ym can likewise be decomposed as follows according to ( 4 . 4 ~ )  and 
(5.1): 

Ym = 'PA + c Y m i E ( t ) C ( z )  (5.3a) 
where 

ymo = [pm YFo(YJ)d'Y, Y m 1  = s_, YFo(Y)f(Y)dY. (5.3b,c) 

It proves useful here to use the mean grain size on the psi scale of the base state 

F = F o ( Y ) [ l  + . f ( Y ) E ( t ) C ( z ) ] .  

Insofar as both F and FO must satisfy (4.3), it follows that 

m 

Y d  to define a relative psi size y such that 

l + J = Y - Y &  (5.4) 

With this relation, (5.2) and (5.3b. c) become, respectively, /I Fo(v)dw = 1, [I Fo(v)f(v)dv = 0, ( 5 5 2 ,  b )  

ymo = 1: vFo(v)dv, y m 1 =  S_, v~o(v) f (v)dv .  (5.5c,d) 

Expansion and linearization of (4.4b) in accordance with (5.1) and (5.4) yields the 

( 5 . 6 ~ )  

co 

following results for standard deviation: 

B = a0 + r o , E ( t ) C ( z )  

where 
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the following linearized forms for D, and D,: 
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The above relations can be used in conjunction with (4.5~) and (4.66) to establish 

(5.7a, b )  D, = Dgo + E D g l E ( W ( 4 ,  D, = Duo + €D,IE(t)C(Z) 

where 

Dg1 = Dgo ln(2)yrn1, Du, = Duo ln(2)( y m l  + 61 )* (5 .7c ,d)  

The grain size D, and its allies above are assumed to have been made dimensionless 
in accordance with the recipe introduced in $3. The same assumption applies to other 
variables appearing henceforth. The above relations can be used to obtain perturbed 
forms for the thickness of the active layer La, roughness height k,  and distance above 
the bed for zero velocity R. Defining 

(5.8a, b )  

it is found from (4.6), (4.7), (5.7) and the definition for the perturbed form of R 
introduced in $3 that 

La = Loo + E. L,lE(t)C(Z), k ,  = ka + rkslE(t)C(z)  

= r = ln(2)(Yml + 61). 
La1 - ksl 

Lao ka 
- _ -  (5.9) 

The relation for sediment continuity (4.1 1) takes the following dimensionless form: 

d B  d F  aqz F- + L - = -- 
at at aZ (5.10) 

where time t has been non-dimensionalized so as to absorb the bed porosity term 
(1 - ,Ip). Linearizing and reducing with the aid of (3.13), (4.12), (4.14), (4.15), (5.1) 
and (5.9), the following dispersion relation is obtained : 

(5.1 1) 

where the parameters quo and yo correspond to the parameters qux and y evaluated 
for the base flow. 

A necessary condition for the formation of longitudinal streaks is Q > 0. The 
conditions under which this constraint is satisfied are analysed below. 

6. Reduction of the dispersion relation 
Let [(w) denote some function of w; the parameter r is defined such that 

J --5 

The dispersion relation (5.11) includes the unknowns 6, Y m l ,  01, and f as well as 
the eigenvalue SZ. The parameters Yml and o1 are, however, related to f according to 
(5.54 and (5.6~);  in addition the constraint (5.56) must hold. These three constraints 
can be used to reduce the dispersion relation to three equations in the three unknowns 
b, Ym1, and 61 (Parker 19916). 

The steps are as follows. Equation (5.11) is first multiplied by F o ( ~ )  and integrated 
over all grain sizes y ;  the resulting relation is simplified using (5.5a,b). Next, (5.11) 
is multiplied by yFo(w), integrated over all grain sizes, and simplified using (5.5c,d). 
Finally, (5.1 1) is multiplied by y2F0(y), integrated over all grain sizes, and reduced 
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with (5.6b,c). The resulting three equations can be expressed in matrix form as follows: 

D2 D2 
D4 - Ld52 D4 

D6 0 6  - 2aoLao52 
[ 

D5 - 00252 

where 

(6.3G.f) 2 -  2- D5 = a ( q d W 2 t b  - quOyOW2) Y 0 6  = a q u O W 2 t r  ln(2), 

and the terms with overbars are defined in accordance with (6.1). 
It is of value to first consider the limiting case of uniform sediment, for which 

FO(V7) = 6(W), f ( W )  = 0 (6.4) 

and 6 denotes the Dirac function. It  follows from the above relations that for this 
case Yrnl = QI = 0 3  = D4 = Ds = D6 = 0, so that (6.2) reduces to 

52 = Dlo (6 .5~)  

where 

This limiting case was studied in detail by Colombini (1993). 
DlO = a2 (quOtb - quOY0) Iw=O a 2 q u 0 0 ( f h  - YOO). (6%) 

In the case of heterogeneous sediment, the solvability condition for (6.2) is 

D2 D2 
0 4  - Lao52 D4 ] =o. (6.6) 

0 6  - 2tTo Ldfi  
det [ D1i52 

D5 - Q,ZQ D6 

Although the resulting characteristic polynomial for R would appear to be third 
degree, it turns out that, since for 52 = 0 the two rightmost columns are the same, 
52 = 0 is always a root. The two remaining roots which are not necessarily zero satisfy 
the following relation : 

h 

R 2 - 6 1 5 2 - D 2 = 0  
where 

(6.7) 

where 1+ and 1- are given by 

A* =; (1 +4$)”]. (6.9~) 
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It should be evident from the form of the equations that in the limit of vanishing 
standard deviation of the base size distribution, 5 2 1  approaches the limit for uniform 
sediment and 522 vanishes. An illustration of this for a specific case is given below. 

Note that, once the eigenvalues are known, it is possible to evaluate Yml and o1 as 
functions of b. Eliminating o1 from the first two rows of (6.2) we obtain, for example 

(6.10) 

7. Discretization; solution for the two-size case 
The numerical implementation of the above solution requires a discretization of 

w space. Here grain size content is assumed to be spread across N contiguous 
intervals (wi, w i  + Aw), and the content fraction Foi in the ith interval of the base size 
distribution is defined to be 

Foi = Fo(wi)AV* 
This corresponds to a density Fo(w) that consists of the sum of a forest of weighted 

Dirac functions 
N 

i= 1 

The definition (6.1) thus takes the discretized form 
N 

i=l 

The simplest case of heterogeneous sediment of interest is that of a mixture of just 
two sizes, with only a small difference in size between the two, and with equal content 
of both in the base size distribution. To this end grain sizes YI and Y2 are defined 
such that 

(7.3a, b ,  c )  

where y* is taken to be a small parameter. It can be immediately established from 
(5.3b,c), (5.4), ( 5 3 ,  (5.6b,c) and (7.1) that 

y1 = y m o  - Y*,  y 2  = y m o  + w*, Fol = F02 = i 

* w1 = --w*, w 2  = w*, 0 0 = w ,  (7.3d, e , f  1 

fl + f 2  = 0, y m l  = - f l ~ * ,  61 =o. (7.3g, h,  i )  
Since IJJ* is a small parameter, the functions qd(y)  and yo(y)  need only be evaluated 

(7.4) 

for small values of y. Grain size D can thus be expressed as 

D = exp[ln(2)Y] = exp[ln(2)(Ymo + y)] = D,o[l + ln(2)yl. 

Expanding the forms for quo and yo in y yields the following results at linear level: 
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where the parameter NO, defined as 

is evaluated at the base flow and with D = Dg0. The form for NO is readily obtained 
from (4.13~). Here both parameters Q1 and Qz are positive, with Q2 taking the 
constant value of 0.033 and Q1 varying from 0.936 at very low transport rates to 0 in 
the limit of infinite transport rate. 

Substituting (7.5) into (6.3) and reducing with (6.8) and (6.9), the following approx- 
imate results are obtained : 

( 7 . 6 ~ )  

(7.66) 

Note that Q1 approaches the value for uniform sediment, and 82 approaches 0 as 

From (6.10) we can now evaluate Y,I as function of b for the two eigenvalues i21 
y* + 0. 

and 8 2 .  We obtain 

( 7 . 7 ~ )  

(7.7b) 

8. Discussion of results 
The theory presented in the previous section for the case of 'weak' sorting allows a 

simple explanation of the mechanism of formation of sand ribbons. 
First of all we recall that the theory for homogeneous sediment (Colombini 1993) 

shows the existence of a critical threshold for the unperturbed Shields stress 80, above 
which instability occurs. Marginal conditions are obtained, for the uniform-sediment 
solution, when 

(8.1) 
or equivalently when 

t b  = (8.2) 

8 = Dlo = a 2 q a ( t b  - 700) = 0, 

Using (8.2) it is possible to determine 8, for every fixed value of the other parameter 
Dg0. Under these conditions, equations (7.6) and (7.7) become singular. Nevertheless, 
far from marginal conditions for uniform sediment, they clearly show how relaxing 
the hypothesis of homogeneous sediment modifies the stability plot. 

We will analyse two cases, one for which t b  c ym so that the theory for homogeneous 
sediment does not predict instability, and a second one for which t b  > ym, so that the 
uniform-sediment theory predicts instability for perturbations in a selected range of 
wavenumbers. 

When tb-ym c 0, it follows from (7.6b) that 8 2  is positive, t ,  being always negative. 
If, on the other hand, t b  - yo0 is positive, (7.6a) shows that 81 is positive, and greater 
than Dl0 so that an increased growth rate with respect to the homogeneous sediment 
is found. 

It can easily be shown that as 80 approaches 6,, qm falls quite rapidly toward zero, 
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and thus towards a situation of neutral stability. When the sediment is heterogeneous, 
then, even for weakly sorted mixtures, instability occurs regardless the value of the 
unperturbed Shields stress, provided that the grains are allowed to move. 

The physical explanation of the increased instability found for the case of hetero- 
geneous sediment is contained in (7.7), which show that, assuming b positive, Y,!l 
and Y;, are negative when the correspondent eigenvalue is positive. Recalling the 
expansions ( 3 . 2 ~ )  and (5.3a) it can be seen that a negative value of Y,1 corresponds 
to a perturbation of the surface size distribution associated with an excess of finer 
sediment over the crests. In this configuration, which is always observed experimen- 
tally, the near-bed secondary flow driven by roughness variations is directed in the 
same way as the secondary flow driven by variations of bed elevation, leading to an 
increased amplification. 

Kuroki & Kishi (1981) and 
Tsujimoto (1989) have relied on one or both of the following a priori assumptions 
in order to close the problem and explain the phenomena: ( a )  a rhythmic transverse 
variation in bed elevation generates a secondary flow directed from trough to crest; 
(b )  a rhythmic variation in bed roughness generates a secondary flow from rough to 
smooth. These assumptions, which are empirically justified, provide plausible starting 
points for the explanation of streaks in the absence of a flow model appropriate to the 
problem. In a complete treatment, however, statements ( a )  and ( b )  would constitute 
part of the conclusions rather than assumptions. The present analysis is complete in 
this regard, in that both the streaks and the observed pattern of secondary flow are 
predicted from the same model, which is presented in mathematically closed form, 
and with no unnecessary assumptions. 

The behaviour of the eigenvalues just discussed for the case of weak heterogeneity 
is confirmed for the case of arbitrary 00, as shown in figure 5. The two plots have been 
obtained using the complete solution for two fractions and are thus also valid in the 
vicinity of marginal conditions for the homogeneous case. Figure 5(a) shows a case for 
which the unperturbed Shields stress is above the critical threshold for instability in the 
homogeneous case. The dashed-dotted line represents the case of no heterogeneity, 
and shows that perturbations of bed elevation only are indeed unstable (positive 
growth rate) with a maximum growth rate for a value of the wavenumber ct close to 
4.8 (corresponding to a wavelength of about 1.3 times the unperturbed flow depth). 
The solid, dashed and dotted lines show the behaviour of the two eigenvalues of the 
heterogeneous case, for increasing values of the standard deviation 00. One of the 
two eigenvalues is always positive and greater than the homogeneous one, leading to 
instability for every value of the wavenumber. The wavenumber corresponding to the 
maximum growth rate is practically unaffected by changes in the standard deviation. 

When the bed is composed of heterogeneous sediment, then, the growth rate is 
increased, owing to the destabilizing effect related to changes in bed roughness that 
are consequences of the process of sorting. This effect is larger for increased values 
of the standard deviation of the mixture. 

In figure 5(b)  an analogous plot is presented for a value of the unperturbed Shields 
stress below the critical threshold for instability for the homogeneous case. In the 
case of heterogzneous sediment, instability is again found for every value of the 
wavenumber. The wavelength of maximum amplification does not seem to be altered 
much by changes in either the standard deviation or the unperturbed Shields stress. 

The prediction of a ratio of wavelength to depth of 1.3 compares with numerous 
measured values between 1 and 2, with the upper limit being more common. The 
agreement is thus reasonable, although the predicted value is somewhat small. 

Two earlier analyses of longitudinal streaks, i.e. 
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FIGURE 5. Growth rate Q as function of the wavenumber a for different values of the standard 
deviation uo. ( a )  flo > 0,; (b)  flo < 0,. The dashed-dotted line represents the case of homogeneous 
sediment (or equivalently uo = 0): -, 00 = 0.2; ----, 00 = 0.5; ...... , uo = 1. 

The formulation in terms of moments presented in $6 allows the determination of 
the two eigenvalues of the problem for every assigned distribution of the grain sizes 
F o ( ~ ) ,  the only problem being the evaluation of the integrals (6.3~-f) using (6.1). The 
case of a log-normal distribution of grain-sizes with prescribed standard deviation 00 

could thus be tackled numerically. When compared to the mixture of two fractions 
only discussed above, no significant differences in stability characteristics were found 
for the log-normal case for values of 00 up to 3. 

Finally, a typical case of a bimodal distribution of sediments was studied and 
compared with an analogous distribution obtained with two Dirac functions. The 
densities for the two cases are, respectively, 

Fo(Y) = FO,S(Y - Y , )  + FO,S(Y - Y,) (8.3b) 
where Fol = 0.3,F02 = 0.7,aol = 602 = 1, YI = -1, Y2 = 2. 
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FIGURE 6.  Growth rate Q for the unstable eigenvalue as function of the wavenumber CI for a 
bimodal distribution: -, continuous distribution; - - - -, discrete distribution. 

As shown in figure 6 for the unstable eigenvalue, a continuous distribution of 
sediment leads, in this case, to higher values of the growth rate than those associated 
with the analogous discrete distribution. The wavenumber for maximum growth rate 
is again close to 5. 

9. Conclusion 
The model presented here allows for the formation of stripes that include varying 

degrees of elevation and roughness variation. It is thus capable of explaining the 
formation of both elevation and roughness stripes. As opposed to the results of 
Colombini (1993) for elevation stripes in uniform sediment, the present theory predicts 
that even a slight degree of sediment heterogeneity results in an instability leading to 
stripe formation at any Shields stress in excess of the threshold value for sediment 
motion. A general explanation of the formation of longitudinal streaks over an 
erodible bed has thus been achieved. 
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